

 textgroup

 v0.1.0

 Table of contents

 	Overview

 	For Users

 	For Operators

 	For Developers

 	
 Modules

 	textgroup_acceptor

 	textgroup_acceptor_sup

 	textgroup_app

 	textgroup_client

 	textgroup_client_sup

 	textgroup_sup

 	textgroup_systemd

 Textgroup

[image: CI]
Textgroup is a groupchat service usable with TCP clients such as
Telnet or Netcat. The purpose of this project is to serve as an example
application for Erlang/OTP newcomers.
Requirements
	Erlang/OTP (22 or newer).
	Rebar3 (3.16.0 or newer).

Quick Test
The Textgroup service can be compiled and started with an Erlang shell
by running the following command:
rebar3 shell

The service is stopped by calling q(). within that shell.
Continuous Integration
The results of continuous integration tests can be viewed on GitHub,
including test suite logs and coverage analysis.
Documentation
There's documentation for users, operators, and
developers on the Textgroup web site.

 For Users

Textgroup can be used with TCP clients such as Telnet or Netcat. For example:
telnet localhost 1111

Once connected, the server understands the following commands:
peers
Show the IP addresses of your current peers.
stats
Show some statistic regarding the current session.
help
Show a help message.
quit
Quit the current session.
Any other messages are sent to all connected peers.

 For Operators

Building Textgroup
The Textgroup source code can be retrieved and built using the following
commands. This requires Erlang/OTP and Rebar3 to be
in the $PATH.
curl -L https://github.com/weiss/textgroup/archive/v0.1.0.tar.gz | tar -C /tmp -xzf -
cd /tmp/textgroup-0.1.0
rebar3 as prod tar

Deploying Textgroup
The self-contained release archive built in the previous step
includes the required parts of Erlang/OTP and can be extracted to an arbitrary
location. For a persistent installation, the administrator might want to create
a dedicated _textgroup user and extract the release archive into that user's
$HOME directory:
sudo useradd -m -d /opt/textgroup _textgroup
sudo tar -C /opt/textgroup -xzf /tmp/textgroup-0.1.0/_build/prod/rel/textgroup/textgroup-0.1.0.tar.gz
sudo chown -R -h _textgroup:_textgroup /opt/textgroup

A systemd service unit could be installed and enabled like this:
sudo cp /opt/textgroup/etc/systemd/system/textgroup.service /etc/systemd/system
sudo systemctl daemon-reload
sudo systemctl --now enable textgroup

Configuring Textgroup
The /opt/textgroup/releases/0.1.0/sys.config file may be edited in order to
adjust configuration settings such as the TCP port number. As an alternative,
those settings can be overridden on the command line in the systemd unit. For
example, run sudo systemctl edit textgroup and enter:
[Service]
ExecStart=
ExecStart=/opt/textgroup/bin/textgroup foreground -textgroup port 1111
Controlling Textgroup
The Textgroup service can be controlled using the textgroup command. The
caller must have the same .erlang.cookie file (with correct permissions) in
their $HOME directory as the user running Textgroup. For a list of available
commands, see:
/opt/textgroup/bin/textgroup help

The log output can be viewed with:
sudo journalctl -u textgroup

Advanced: Upgrading Textgroup
To create a new release that can be used to hot-upgrade the old one:
cd /tmp/textgroup-0.1.0
rebar3 as prod release
editor src/*.erl
sed -i s/0.1.0/0.2.0/ rebar.config src/textgroup.app.src
rebar3 as prod release
rebar3 as prod appup generate
rebar3 as prod relup -n textgroup -v 0.2.0
rebar3 as prod tar

The new release archive must then be copied into place (run this command and the
following ones as the _textgroup user):
cp /tmp/textgroup-0.1.0/_build/prod/rel/textgroup/textgroup-0.2.0.tar.gz /opt/textgroup/releases

Finally, the actual upgrade of the running service is performed like this:
/opt/textgroup/bin/textgroup upgrade 0.2.0

If the new release doesn't work as expected, a downgrade to the old one can be
performed:
/opt/textgroup/bin/textgroup downgrade 0.1.0

The unused release can then be removed. E.g., to uninstall the new one after
downgrading:
/opt/textgroup/bin/textgroup uninstall 0.2.0

A few caveats: If data structures (such as the client_state record) were
modified, converting them during the upgrade might require additional
handling. Complex applications/dependencies may well need
explicit support for hot release upgrades, such as custom appup files.
Also, if a different Erlang/OTP version is used to build a new release, the
upgrade process involves a restart of the emulator. For this to
work, the heart functionality must be enabled.

 For Developers

Development
Textgroup development requires Erlang/OTP and Rebar3 to be
in the $PATH. The source code repository is found on GitHub.
Building Textgroup
rebar3 compile

Testing Textgroup
rebar3 check

Running Textgroup
rebar3 shell

Creating Textgroup Documentation
rebar3 ex_doc

Creating a Textgroup Release
rebar3 release

See the operator documentation for hints on how to deploy and run such a
release.
Design Hints
The Textgroup service uses the supervision tree shown below: The
main supervisor starts a worker child (for integrating with
systemd) and two supervisor childs, one for supervising a
fixed-size pool of five TCP connection acceptors, and
another one for supervising dynamically created connection
handlers, one per client (there's six of them, in this example).
[image: Supervision tree]
This is a straightforward structure, except that the acceptor processes work
in a somewhat non-ideomatic way. However, don't let the
implementation confuse you: Maybe just view it as a blackbox for the
moment. Once everything else seems clear, here's an explanation of what's going
on in the textgroup_acceptor module:
	Each acceptor process blocks in gen_tcp:accept/2 while waiting for a new
connection. The problem is: While waiting, the process is
unresponsive to system messages. Basically, OTP processes are supposed
to only ever wait for Erlang messages, to handle those in callback
functions, and to return to waiting for the next Erlang message. As
gen_tcp (quite against the usual OTP semantics)
doesn't offer a non-blocking way to accept connections (whereas there is a
non-blocking way to receive data from the socket), the acceptor processes call
gen_tcp:accept/2 with a timeout, so they can check for system messages every
few seconds. One alternative is to spawn simple (non-OTP) processes
just for blocking in gen_tcp:accept/1, and then wake a proper OTP process
for handling the new connection, basically implementing the non-blocking
mechanism to accept connections that gen_tcp doesn't provide. Another option
would be using prim_inet:async_accept/2, which does offer this
functionality. However, that's not a documented interface. In the future, a
nicer solution might become available based on the new socket backend, which
provides a non-blocking accept/2 variant.

	The textgroup_acceptor is built as a special process. It could
just as well be implemented as a generic server with the same
behavior. The only reason it wasn't done this way is that most gen_server
features would remain unused. Matter of taste.

	When a new connection is accepted, the acceptor asks textgroup_client_sup to
spawn a new process for handling the client. An alternative would be to not
split the tasks of accepting and handling connections into separate processes:
You could spawn a pool of client handler processes that wait for new
connections, maybe using the same workaround as the textgroup_acceptor to
remain responsive. Those handlers would spawn a fresh worker immediately after
accepting a connection, handle the connection, and then terminate. This is
suggested in Learn You Some Erlang and Erlang and OTP in
Action, for example. It would also be consistent with the usual
Erlang pattern to create a process for each concurrent activity (processing
a client connection from begin to end) rather than each task (accepting
connections in one process and then handling them in another). However, for
Textgroup, it seemed preferable to have a clear separation of the fixed-size
acceptor pool on the one hand and the client handler processes on the other:
The advantage is a one-to-one mapping of clients and (fully responsive)
handler processes. This allows for asking textgroup_client_sup for a list of
clients and communication with them without delays. This design would also
allow more complex applications to easily close/change the listener socket
without disconnecting existing clients.

All that said, real-world projects will often just use an existing application
(such as Ranch) for accepting connections.

textgroup_acceptor

 Summary

 Types

 state/0

 Functions

 init(State)

 loop(Acceptor_state)

 start_link(Listener)

 system_code_change(State, Mod, OldVsn, Extra)

 system_continue(Parent, Debug, State)

 system_terminate(Reason, Parent, Debug, State)

 Types

 state/0

 -opaque state()

 Functions

 init(State)

 -spec init(state()) -> no_return().

 loop(Acceptor_state)

 -spec loop(state()) -> no_return().

 start_link(Listener)

 -spec start_link(gen_tcp:socket()) -> term() | {error, term()}.

 system_code_change(State, Mod, OldVsn, Extra)

 -spec system_code_change(state(), module(), term() | undefined, term()) -> {ok, state()}.

 system_continue(Parent, Debug, State)

 -spec system_continue(pid(), [sys:dbg_opt()], state()) -> no_return().

 system_terminate(Reason, Parent, Debug, State)

 -spec system_terminate(term(), pid(), [sys:dbg_opt()], state()) -> no_return().

textgroup_acceptor_sup

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 -spec init([]) -> {ok, {supervisor:sup_flags(), [supervisor:child_spec()]}}.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

textgroup_app

 Summary

 Functions

 config_change(Changed, New, Removed)

 prep_stop(State)

 start(StartType, StartArgs)

 stop(State)

 Functions

 config_change(Changed, New, Removed)

 -spec config_change([{atom(), term()}], [{atom(), term()}], [atom()]) -> ok.

 prep_stop(State)

 -spec prep_stop(term()) -> term().

 start(StartType, StartArgs)

 -spec start(application:start_type(), any()) -> {ok, pid()} | {error, term()}.

 stop(State)

 -spec stop(term()) -> ok.

textgroup_client

 Summary

 Types

 state/0

 Functions

 code_change(OldVsn, State, Extra)

 get_address(PID)

 handle_call(Request, From, Client_state)

 handle_cast(Msg, Client_state)

 handle_info(Info, Client_state)

 init(_)

 send(PID, Data)

 start(Socket)

 start_link(Socket)

 terminate(Reason, Client_state)

 Types

 state/0

 -opaque state()

 Functions

 code_change(OldVsn, State, Extra)

 -spec code_change({down, term()} | term(), state(), term()) -> {ok, state()}.

 get_address(PID)

 -spec get_address(pid()) -> binary().

 handle_call(Request, From, Client_state)

 -spec handle_call(term(), {pid(), term()}, state()) -> {reply, {error, term()}, state()}.

 handle_cast(Msg, Client_state)

 -spec handle_cast(term(), state()) -> {noreply, state()}.

 handle_info(Info, Client_state)

 -spec handle_info(term(), state()) -> {noreply, state()}.

 init(_)

 -spec init([gen_tcp:socket()]) -> {ok, state()}.

 send(PID, Data)

 -spec send(pid(), iodata()) -> ok.

 start(Socket)

 -spec start(gen_tcp:socket()) -> ok.

 start_link(Socket)

 -spec start_link(gen_tcp:socket()) -> {ok, pid()} | ignore | {error, term()}.

 terminate(Reason, Client_state)

 -spec terminate(normal | shutdown | {shutdown, term()} | term(), state()) -> ok.

textgroup_client_sup

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 -spec init([]) -> {ok, {supervisor:sup_flags(), [supervisor:child_spec()]}}.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

textgroup_sup

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 -spec init([]) -> {ok, {supervisor:sup_flags(), [supervisor:child_spec()]}}.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

textgroup_systemd

 Summary

 Types

 state/0

 Functions

 code_change(OldVsn, State, Extra)

 handle_call(Request, From, State)

 handle_cast(Msg, Systemd_state)

 handle_info(Info, Systemd_state)

 init(Opts)

 ready()

 reloading()

 start_link()

 stopping()

 terminate(Reason, State)

 Types

 state/0

 -opaque state()

 Functions

 code_change(OldVsn, State, Extra)

 -spec code_change({down, term()} | term(), state(), term()) -> {ok, state()}.

 handle_call(Request, From, State)

 -spec handle_call(term(), {pid(), term()}, state()) -> {reply, {error, badarg}, state()}.

 handle_cast(Msg, Systemd_state)

 -spec handle_cast({notify, binary()} | term(), state()) -> {noreply, state()}.

 handle_info(Info, Systemd_state)

 -spec handle_info(ping_watchdog | term(), state()) -> {noreply, state()}.

 init(Opts)

 -spec init(any()) -> {ok, state()} | {stop, term()}.

 ready()

 -spec ready() -> ok.

 reloading()

 -spec reloading() -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

 stopping()

 -spec stopping() -> ok.

 terminate(Reason, State)

 -spec terminate(normal | shutdown | {shutdown, term()} | term(), state()) -> ok.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

